OpenJudge

1008:完美覆盖

总时间限制:
1000ms
内存限制:
65536kB
描述
一张普通的国际象棋棋盘,它被分成 8 乘 8 (8 行 8 列) 的 64 个方格。设有形状一样的多米诺牌,每张牌恰好覆盖棋盘上相邻的两个方格,即一张多米诺牌是一张 1 行 2 列或者 2 行 1 列的牌。那么,是否能够把 32 张多米诺牌摆放到棋盘上,使得任何两张多米诺牌均不重叠,每张多米诺牌覆盖两个方格,并且棋盘上所有的方格都被覆盖住?我们把这样一种排列称为棋盘被多米诺牌完美覆盖。这是一个简单的排列问题,同学们能够很快构造出许多不同的完美覆盖。但是,计算不同的完美覆盖的总数就不是一件容易的事情了。不过,同学们 发挥自己的聪明才智,还是有可能做到的。
现在我们通过计算机编程对 3 乘 n 棋盘的不同的完美覆盖的总数进行计算。



任务
对 3 乘 n 棋盘的不同的完美覆盖的总数进行计算。
输入
一次输入可能包含多行,每一行分别给出不同的 n 值 ( 即 3 乘 n 棋盘的列数 )。当输入 -1 的时候结束。

n 的值最大不超过 30.
输出
针对每一行的 n 值,输出 3 乘 n 棋盘的不同的完美覆盖的总数。
样例输入
2
8
12
-1
样例输出
3
153
2131
全局题号
1665
添加于
2015-05-20
提交次数
8
尝试人数
2
通过人数
2

Other language verions